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Abstract

Acoustic emission data were collected during the hydroburst testing of eleven 15 inch diameter
filament wound composite overwrapped pressure vessels. A neural network burst pressure prediction was
generated from the resulting AE amplitude data. The bottles shared commonality of graphite fiber, epoxy
resin, and cure time. Individual bottles varied by cure mode (rotisserie versus static oven curing), types of ‘
inflicted damage, temperature of the pressurant, and pressurization scheme. Three categorical variables
were selected to represent undamaged bottles, impact damaged bottles, and bottles with lacerated hoop
fibers. This categorization along with the removal of the AE data from the disbonding noise between the
aluminum liner and the composite overwrap allowed the prediction of burst pressures in all three sets of
bottles using a single backpropagation neural network. Here the worst case error was 3.38 percent.
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Introduction

Acoustic Emission

Acoustic emission (AE) is a nondestructive evaluation method that involves instrumenting a
specimen  with piezoelectric transducers and recording parametric representations of the
waveform data from flaw growth activity in order to perform a structural integrity analysis.
Analysis of the AE data allows for the determination of failure mechanisms that are active in the
specimen. Consequently, it also contains information concerning the structural integrity.

Burst Pressure Prediction

The prediction of burst pressures in both damaged and undamaged filament wound
composite pressure vessels has been previously accomplished using linear multivariate statistical
analysis and backpropagation neural networks [1-3]. The goal of this research was to utilize a
backpropagation neural network to make burst pressure predictions on 15 inch (380 mm)
diameter graphite/epoxy filament wound composite overwrapped pressure vessels (COPVs
otherwise known as bottles) that were varied in the method of cure, type of damage, temperature,
and pressurization scheme: What made this research different from its predecessors was that the
disbonding of the composite overwrap from the aluminum liner generated multiple hit AE data
(noise) which had nothing to do with the structural integrity of the vessels. This precluded a
straightforward solution similar to those obtained previously until the noise data were eliminated.

Neural Networks

Artificial neural networks are a diverse set of robust mathematical tools used to classify data
- into clusters, recognize patterns, process signals, and do predictive modeling and forecasting.
Here an unsupervised SOM neural network was used to classify the ‘composite failure
mechanisms that occur during pressurization. The backpropagation architecture is a feed-



forward design that was subsequently employed for making supervised burst pressure
predictions.

Kohonen Self Organizing Map (SOM)

In composite structures, the amplitude frequencies [of occurrence] generated during damage
progression can be grouped and classified into failure mechanisms. For small data sets these
mechanisms can be seen as “humps” in the AE amplitude distributions. Figure 1 shows the
amplitude distribution for bottle SN002, an impact damaged graphite/epoxy COPV used for
training the backpropagation network, which appears to have four humps. This number of
failure mechanisms (four) was confirmed by classifying the AE amphtude data with a Kohonen
self-organizing map (SOM) neural network
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Figure 1 AE amplitude distribution for COPV SN002

Backpropagation

The backpropagation neural network is a feed-forward, supervised neural network, that is to
say, it does not return a feedback signal to itself during each training pass, and it is necessary to
train the network on a known solution before applying it to a new case. This is called supervised
learning. A backpropagation neural network is typically constructed with an input layer, one or
more hidden layers (each composed of multiple neurons) for mapping, and an output layer.

Experimental Procedure

Pressure Vessels

Eleven 15-inch diameter filament wound COPVS were wet wound on a filament winder. The
bottles were thin-walled aluminum cylinders overwrapped with graphite fibers and epoxy resin.
The winding sequence was 3 inner hoop plies, followed by 2 helical layers, and then 2 outer
hoop plies. Eight of the bottles were rotated at slow speeds (rotisserie style) during oven curing;
three were oven cured without rotation. Four of the COPVs were tested at ambient temperature,
while the remaining séven experienced cryogenic temperatures. Due to the nature of
piezoelectric materials, it was thought that the large variation in temperatures would have a
significant effect on transducer output voltage, as well as adding to the brittle nature of the
composite material.

Varying amounts of artificial damage were inflicted on the bottles in the form of impacts
from both blunt and sharp tups, as well as with the cutting of hoop fibers: five tows were cut in
the mid hoop ply and five in the first outer hoop ply. The strain rate was also varied non-
systematically in that the pressurization scheme used on each bottle test varied in both duration
and number of pressurization ramps/holds; thus, no two bottles were pressurized alike. ,

The amount of diversity in some of these variables and the small number of bottles would not
allow for statistical analysis of the effects of each variable. Therefore, neural networks were



with the failure or burst pressures.

employed as the primary method of data analysis. Table 1 summarizes the test variables along

‘Table 1 Summary of graphite/epoxy COPYV variables and burst pressures

Test Burst Pressure
S/N | -Damage | Cure Type | Temperature [psig]
002 | Impacted Static Cryogenic 1880
003 | Impacted | Rotisserie Cryogenic 2004
005 None Rotisserie Ambient 2960
009 None Static Cryogenic 2544
010 None Static Cryogenic 2460
013 None Rotisserie Ambient 2874
014 None Rotisserie Cryogenic 2390
018 | Lacerated | Rotisserie Ambient 2864
020 | Impacted | Rotisserie Cryogenic 1967
025 | Lacerated | Rotisserie Cryogenic 2393
026 | Lacerated | Rotisserie Ambient 2675

AE Data Collection

Acoustic emission data were successfully collected from all seven of the bottles in the test
set. A multi-channel Physical Acoustics Corporation (PAC) AE analyzer was used to record the
acoustic emission flaw growth data from seven AE channels, each representing a transducer at a
unique location on the test bottles. This data acquisition unit also allowed for a separate
parametric input, which was used to record a £5.0 volt signal representative of the pressure in the
test specimen. Figure 2 shows a schematic diagram of the test setup.

Six PAC AE transducers were mounted equidistant around the circumference of the top and
bottom hoop winds on each bottle. The seventh transducer was mounted near the upper polar
boss on the helically wound portion of the bottles. In the ambient temperature tests, hot melt
glue was used to bond each transducer and provide acoustical coupling between the transducer
and the specimen. For the cryogenic tests, high-aqueous vacuum grease and a mechanical
housing were used to couple the transducers to the bottles. The data sampling threshold was set
to record all acoustic emission hits that had an amplitude of 60 dB or greater.
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Figure 2 Sensor positioning and test setup




AE Data Filtering
Even though constraints such as amplitude threshold, peak deﬁmtlon time (PDT 100 ps), hit

definition time (HDT=500 us), and hit lockout time (HLT=500 us) were applied to the acoustic
emission sampling, considerable noise and multiple hit data were still present in the raw data
sets. HDT is the minimum time that an acoustic emission event must have to be recorded, and
the combination of HDT and HLT determines the maximum time for an event before it is
considered to be a multiple hit event [4]. These settings work in real-time as data are recorded.

Multiple hit data occur when many acoustic emission waveforms reach the transducer closely
spaced in time, one after another (in a condition of buffer overrun or in the cases where HDT and
HLT are not properly set). This results in a long artificial waveform that is actually comprised of
several smaller waveforms, which will have vastly different AE parameters than single hit data.
In this case, the multiple hit data are probably the result of composite disbonding from the
aluminum liner, a failure mechanism which should not affect the burst pressure.

In order to remove these multiple hits from the recorded data set, it was determined that any
acoustic emission hits having durations longer than 100 ms were to be removed. Rise time, the
waveform parameter that represents the time-to-peak of the waveform, was used to further
remove suspected multiple hit data. Long rise times typically indicate multiple hits logged
together. Thus, any hit with a rise time of greater than 25 ms was also removed from the data
set. The AE energy parameter is a measure of the area under the rectified waveform envelope.
In the case of these data, many hits were reported by the data acquisition system to have zero
energy. These hits were also discarded under the assumption that they were noise.

The final filter applied to the data was to select those data points to be used in the actual burst
pressure prediction. After removing all of the data prior to the start of pressurization (the

" acquisition hardware recorded AE parameter data before pressurization commenced), it was
decided that the first 2000 data points would provide a sufficient sample size for the neural
network to train on while still taking only those data that were acquired at or below 20 percent of
the anticipated burst pressure. In general, damage is inflicted on composite bottles during any
pressurization cycle; therefore, the goal was to predict on data taken at low proof pressures.

Using the final edited data set from each bottle, a frequency distribution of the amplitudes
was extracted for training and testing of the backpropagation neural network. The histogram
representation of an -amplitude distribution for bottle S/N 002 can be seen in Figure 1, and the
amplitude distributions from the edited data for all eleven bottles are summarized in Table 2.
The neural network was trained to analyze the subtle differences in the distributions from each
bottle and match them to the damage type and burst pressures provided in the training set.

Table 2 Finalized amplitude distribution frequencies (with categorical variables in bold)

Burst
Pressure
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Results

Network Architecture :

The backpropagation neural network used herein [4] had the architecture shown in Figure 3.
The input for each bottle consisted of a 1 x 44 dimensional vector with 3 entries representing the
damage categories (001 undamaged; 010 impacted; and 100 lacerated) plus 41 integers
representing the frequency distribution of amplitudes from 60 dB to 100 dB (Table 2). The
actual burst pressure was also supplied as an input for error calculation at the output.

Each neuron in the hidden layer contains a hyperbolic tangent activation or transfer function
that can be used to approximate the shape of the amplitude distributions. A large number of
neurons can be used together to approximate compound and/or discontinuous curves that will fit
the training data well, but if trained too closely, the backpropagation neural network may not
predict accurately on the test data. Too few neurons in the hidden layer will result in loosely fit
curves that will not correspond well to the training or test data. Using this approach, it was
found that 11 neurons in the hidden layer offered the network that would best fit both the training
and the test data. -

Output Layer
{Burst Pressure-
1 Neuron)

Amplitude -3
Histogram
{41 Neurons}

Hidden Layer
{11 Neurons)

Figure 3 Network architecture

Training the Network
The backpropagation neural network, generated using Neuralware’s NeuralWorks
Professional II Plus software package, was trained on a total of seven COPVs, including bottles
from each of the three damage categories (Table 3). The training set was chosen so that a high
and low burst pressure COPV from each damage category was included. The undamaged
category also included a midrange hurst nressure hottle. Thug the epoch size was seven or the
total number of bottles in the training set. :
: After numerous  experimental iterations, the optimum network architecture and input
- parameters were determined [4]. The learning rule was the normalized cumulative delta, and the

-optimal learning coefficient for the network was found to be 0.30 with a momentum of 0.40.



This relatively large learning coefficient allowed the network to train very quickly and to learn in
only 71 cycles. Because the network trained so quickly, bias neurons were not employed to
speed up the training process. Transition points and learning coefficient ratios were not
‘important either because the default transition point of 5000 cycles was never reached, while the
F’ offset was set at 0.10. ,

A root mean square (RMS) error value on the seven COPVs in the training set is computed
by the software after every training cycle to determine how well the network has trained. Here
the RMS error convergence was set at seven percent. This means that training was considered
complete when the network training curve was within an RMS error of seven percent of the
training data. It was found that a higher convergence criterion left the network too loosely fit to
the training-data, and a lower convergence criterion forced tighter fitting of the training data but
poorer fitting of the test data.

Burst Pressure Predictions

Finally, the trained network was used to predict burst pressures for both the trammg and test
sets. Table 3 shows a summary of the prediction results on all the COPVs. The maximum
prediction error in the seven bottle training set was -2.78 percent, and the maximum error in the
four bottle test set was 3.38 percent. All of these values were well within the goal of predicting
the burst pressures to within a +5 percent error.

Table 3 Summary of training and test results

Predicted
Burst Burst
; pres.sure Pressure Error
S/N Damage _Purpose [psig] [psxg] [%]

_7002° .} “Impacte
©:003: |- Impact
005
010
013 [ None
014 NG o

'[Tram': 1 1880

020 Impacted
0257+ Tacerated <l Trains ) 502393 5 | ©.2369.740 | 20197
026 | Lacerated “Test 2675 2643.174 -1.19

Conclusions

The worst case prediction error of 3.38 percent was very low, and the network trained
quickly in spite of the many test variables involved. Ifthere were any variations in the amplitude
-distribution data due to cure mode, temperature, and pressurization scheme, they were
automatically taken into account by the backpropagation neural network. The fact that network
training was accomplished in only 71 cycles attests to the effectiveness of preprocessing or
editing the AE data to remove the multiple hit data and other noises.
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